0=40+-16t^2

Simple and best practice solution for 0=40+-16t^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=40+-16t^2 equation:



0=40+-16t^2
We move all terms to the left:
0-(40+-16t^2)=0
We add all the numbers together, and all the variables
-(40+-16t^2)=0
We use the square of the difference formula
-(40-16t^2)=0
We get rid of parentheses
16t^2-40=0
a = 16; b = 0; c = -40;
Δ = b2-4ac
Δ = 02-4·16·(-40)
Δ = 2560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2560}=\sqrt{256*10}=\sqrt{256}*\sqrt{10}=16\sqrt{10}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{10}}{2*16}=\frac{0-16\sqrt{10}}{32} =-\frac{16\sqrt{10}}{32} =-\frac{\sqrt{10}}{2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{10}}{2*16}=\frac{0+16\sqrt{10}}{32} =\frac{16\sqrt{10}}{32} =\frac{\sqrt{10}}{2} $

See similar equations:

| 3=2x-x+2 | | 3^3x+8=100 | | 7(l-3)=14 | | -125=5(4b+3) | | -3+k=24.5 | | 17+5k=-8k+13k+17 | | 6x+13=35 | | Y+4y=60 | | 18=27y=39 | | 3.75(6+9x)+.75x=4.5(7x+9) | | (0.1x-27)+(0.4x-48)=90 | | 4(c-1)=32 | | 6*m-2=56+2 | | 10f+16=96 | | 55−2x=3x+10 | | 4=-2.4x | | 8p-12=16p | | 24=57-h | | 16x−8=27+9x | | 9/8=10/(x-3) | | -18z+8=-2(9z-4) | | 4=2.4x | | y=25(2)+200 | | n2.5=6 | | 1=s-40 | | -26+4r=-2(3-4r) | | 108=76+4x | | 8p-3=16 | | w+17-17w=17-16w | | 3-14d=39 | | n+14=5n-2 | | 82=24+x |

Equations solver categories